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NOMENCLATURE 

dimensionless total band absorption; 
dimensionless slab band absorption; 
diameter ; 
band width parameter; 
exponential integral; 
Planck radiosity; 
defined by equation (14); 
gas-surface exchange factor [dimensionless] ; 
slab thickness; 
nongray transfer functions; 
length; 
mean beam length; 
optically thin mean beam length; 
optically thick mean beam length; 
emitted radiative flux; 
absorbed radiative flux; 
radius; 
spectral boundary radiosity; 
integrated band intensity; 
surface-gas exchange factor; 
path length; 
gas temperature; 
dimensionless mean beam length. 

*Assistant Professor. 

Greek symbols 

8. band finestructure parameter; 

p* direction cosine; 
PET absorbing gas density; 
TX, optical depth based upon length x; 
& azimuthal angle. 

INTRODUCTION 

ENGINEERING approximations for the analysis of radiative 
energy transfer from gases frequently involves the assump- 
tion of a uniform temperature. This proves to be a useful 
concept, for example, in a highly turbulent, well-stirred 
reactor and thus finds considerable application in the design 
of combustion devices for varied purposes. The isothermal 
assumption reduces the calculation of radiative transfer to 
the evaluation of transfer integrals depending only upon 
the geometry of the enclosure, with the radiation properties 
appearing parametrically. In general, closed form solutions 
are possible only for a limited number of simple con- 
figurations or in the limits of small and large optical paths. 
Hottel and Sarofim [l] have given a rather complete dis- 
cussion of exchange areas and mean beam lengths for 
various geometries. Their discussion is largely limited to 
gray gases. These topics are also discussed from an 
occasionally different point of view by Siegel and Howell [2]. 
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Calculations of exchange factors and mean beam lengths 
based upon nongray band absorption models are -not 
esneciallv abundant. Tien and Wana F31 have evaluated 
mean beam lengths for parallel plates:i&inite cylinders and 
spheres based upon power law and logarithmic band 
absorption equations. Tien and Ling [4] have used a con- 
tinuous, overlapped line, ~ymptoti~aily log~ithmi~ equa- 
tion and have evaluated mean beam lengths for parallel 
and spherical geometries for a full range of optical paths. 
Edwards and Balakrishnan [S] have similarly evaluated 
mean beam lengths for the parallel geometry based upon 
a theoretical, overlapped line, exponential band model. Each 
of these investigations has been concerned with rather 
specific band absorption models of limited applicabiIity. 
The development and utilization and band absorption 
equations is yet in a state of thtx and there is a clear lack 
of agreement that any one formulation is preferable to 
another, since disagreement among them often appears 
more a matter of detail than of substance. In view of this 
it seems appropriate to develop generalized results which 
are valid for ail band models of a given dass. For molecular 
gases this can be a~omplished in terms of the generalized 
transfer functions arising in the study of planar or spherical 
media. 

FUNDAMENTALS 

The radiative flux emitted by an isothermal gas volume 
to an area on its boundary may be expressed in terms of 
the dimensionless total band absorption as 

where a single band has been assumed for simplicity, D is 
the band width parameter, E,(T,) is the Planck radiosity 
evaluated at the band center or head and gas temperature, 
r, is the optical path through the gas for a given direction 
cosine, p, and azimuthal angle, 4, and is given by 
r1 = p,Sr/l) with pn the absorbing medium density, S the 
integrated band intensity and t the physical path length. If 
the boundary of the gas is a diffuse black surface, equation 
(1) will give the boundary energy flux absorbed by the 
medium, q:, when E,(T,) is replaced by the boundary 
radiosity, R,.. The dimensionless quantity q:/DE,(T,) = 
qyDR, represents the exchange factor per unit area between 
the gas and the boundary, thus 

Gs = Sg = : 
Zn t ss A[7& #&&d#. (21 

no 0 

This quantity is, of course, intimately connected with the 
direct-exchange-area of Hottel [l]. The present treatment 
will emphasize the nongray character of the medium. 

~ongray ~r~s~r~unctioi?s 
Since the objective is to arrive at explicit expressions of 

equation (2) valid for arbitrary band absorption formu- 
lations, some consideration of the nongray transfer functions 
which arise in the study of planar media is needed. These 
functions have been defined by Nelson [6] in the form, 

s 

1 
Klw = (- )” ~(3-n)(x/~~~K-zd~ 

0 

where 

A’“‘(x) = dmA(x)/dx”; m>0 

x 
/P(x) = 

s s 
. . . Y2~(y1)d~i . ..dYl.,,(; m -C 0. 

0 0 

The K.(x) functions satisfy two recurrence relations [7], 

dK.+i(xYdx = -K,(x) (4) 
and 

n&+*(x) = (-).+1A’2-“‘(X)-xK,(x), (5) 

which will be useful in what follows. Explicit formulae for 
the K.(x) for various overlapped-line, band absorption 
models are available elsewhere [6,8]. Although it has not 
been explicitly indicated, the foregoing relations also apply 
for band models depending upon a line structure parameter. 
In this regard, Lin and Chan [9] have presented results 
for the slab band absorptance [S] A,(x) and for Al(x) = 
dd,fx)/dx based upon the band absorption equations of 
Edwards and Menard [lo] and Tien and Lowder [ll], In 
terms of the K,(x) functions these results are expressed by 
A,(x) = -2&(x) and A:(x) = 2K,(x). Nelson [7] has evalu- 
ated K*(X) for the band model due to Goody and Belton 
[12]. For other values of n, equation (5) proves to be quite 
useful. 

APPLICATIONS 

There appears to be only a few simple geometric con- 
figurations which allow an explicit evaluation of equation 
(2). Most of these have been discussed by Hottel and 
Sarofim [l] for a gray medium. All possess azimuthal 
symmetry and thus equation (2) reduces to, 

s 1 

Gs = Sg = 2 ~[~t(,Nlwb. (6) 0 
The dimensionless mean beam length u is defined by 
A(xu) = Gs(x). 

Planar medium 
This geometry has been discussed in a somewhat different 

context by Edwards and Balakrishnan [S], who give results 
for the slab band absorption of an overlapped line exponen- 
tial band, by Nelson [6] who studied the K.(x) functions 
for several overlapped line band absorption models and by 
Lin and Chan [9] who obtained the expression for slab 
band absorption based on the Edwards and Menard [IO] 
and Tien and Lowder [11] equations, thus, including line 
structure effects. For the planar geometry the argument of 
A(x) in equation (6) is simply r&i) = Z&I where z,, = 
p,Sh/D and h is the plate spacing or slab thickness. Sub- 
stitution of this into equation (6) and reference to equation 
(3) with n = 3 shows that, 

Gs = -2K,[z,,]. (7) 

This, of course, is the same as slab band absorption but in 
this form is valid for all band absorption models. In the 
general case the mean beam length for the planar geometry, 
u = L,.h, is obtained by solving the transcendental equation 

A(T~u) = -2K&). (8) 

This calculation has been performed by Edwards and 
Balakrishnan I.51 for the overlapped line, exponential band 
model and by Tien and Ling [4] for another overlapped 
line absorption model. The effect of line structure is not 
often considered but could easily be accommodated by 
equation (8). For example, in the nonoverlapped strong- 
line limit ,4(x) = 2J(j?x), -2&(x) = (g/3) &x) and 
u = 16/9 as found by Elsasser [13] for his narrow band 
model. 

Circular cylinder radiating to center of one end 
Another geometry which allows evaluation of equation (6) 

is a circular cylinder of radius R and length L when the 
receiving area is a differential spot at the center of one end. 
In this case the form of Z,(K) depends upon whether the 
direction cosine causes the beam to intersect the opposite 
end or the side of the cylinder. Consequently the integral 
in equation (6) must be split into two parts so that, 

~LJ~R~+L=~'~ 

Gs = 2 
J 0 
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Introducing a change of variable, .u’ = (1 -#2, into the 
first term and using some subsequent rearrangement gives, 

Gs = 2K~[5a(1+L2/RZ)“2] -2K3[5rJ-2K3[rL]. (10) 

As would be expected, as L/R -+ 0 Gs -+ - 2Ka [rL] so that 
the behavior is like that of planar medium of thickness L. 
It is an interesting result that as L/R + a, Gs + - 2K3 [Q], 
thus, as is known, a semi-infinite cylinder radiating to the 
center of its base produces the same flux as an infinite slab 
whose thickness is equal to the radius of the cylinder. 
Insofar as mean beam length is concerned it is obvious that 
the behavior of the two limits discussed above would 
parallel that of a slab. For intermediate conditions it is 
convenient to consider a cyhnder with L = 2R for the 
overlapped-line, exponential band model. In the optically 
thin limit -2&(x) +2x while A(x) + x; thus, putting 
A(Qu) = Gs(T~) with t,, -+ 0 gives IQ = 3 - J5 = 0.7639 
which agrees with the result given by Hottel and Sarofim 
[ 11, as it must. Letting td -* ‘o results in - 2R&d) _ In rd+ 
y+ l/2 and A(Q) _ Inx,,+Y. With these one finds u, = 
(e/S)“z = 0.7373 and thus u,/ua = 0.965. 

For other values of L/R one ftnds in the optically thin 
limit that Lo = 2[R + L - (R* + L2)‘@] while the optically 
thick exponential band yields L, = eiizL/(l +L'/R*)'". 
The ratio u,/uO is expressed as, 

ucc e1/2 X 
_=- 
uo 2 (lfX2)“~[1+X-(l+X~)“*] (1Oa) 

where X = L/R. This expression has a broad m~~rnurn 
about X = 1 where u,/uO = 0.9951. Since one expects the 
mean beam length to be monotonic in optical depth this 
represents a remarkably small variation which may have 
possible applications. 

The sphere 
Aithough the spherical medium is only a special case of 

the spherical shell considered next, it is convenient to treat 
it Separately. In this case it iS easily shown that r,(p) = Tdp 

and equation (6) becomes 

(11) 

Since the integrand does not correspond to any of the 
K,(x) functions it is necessary here to use equation (5) with 
n = 2, and then to apply equation (4) with the result, 

(12) 

A straightforward integration by parts using equation (4) 
and K,(O) = 0 for n > 2 yields 

Gs = F[T,,], 

with 

F[Td] = 2K3[%] + 8K,[~d]/Td+8K3[Td]/TdZ. (14) 

Explicit formulae for the K,(x) up to n = 5 have been given 
by Crosbie and Khalil[8] for gray, triangular and exponen- 
tial bands with overlapped lines. Nelson [6] has obtained 
results up to n = 4 for several logarith~c type absorption 
models with overlapped lines. For these later cases the 
results for KS(x) can be easily obtained by application of 
equation (5). Expressions with n r 3 for band models with 
line structure effects have not been reported, but again 
application of equation (5) can be made. If one substitutes 
the expressions for a gray band into equation (14) the 
result given by Hottel and Sarofim (Cl], p. 267) is recovered. 
For an overlapped-line exponential band equation (14) 
yields, 

Gs = y-1/2+InTd-2Ez[T6]/Td+ {I-i?&[Td]}/T;. (15) 

The asymptotic behavior of the mean beam length has been 
discussed by Tien and Wang [3]. The results are tig = 2/3, 
u, = e-if2 = 0.6065 and U&O = 0.9098. 

The sphericul shell 
In the spherical shell the gas is confined between spheres 

of radius RI and Rz where RI < R2. The exchange factor 
between the gas and the inner surface is given by the 
integral expression, 

rll -(RtI&)I 
Gsl = 2(R~/R~)’ 

J 
&4) 

fl -UWR~)*11’z12 

x rl- I Cl - (RdRd212 
16~~ 

drl (16) 

which yields, 

Gs 1 = q {2F[?d,(l -RI,‘&@] 

-2F[Td,{ I- (RI/&)~)~‘~,‘~] 
+ [~-(R~IRz)~]K~[T~~{~-(R~/Rz)~~~'~/~I 

- [1 +R,/R$&[7,,,(1 -Ri/R2)/2]}. (17) 

The exchange between the gas and the outer surface results 
in the integral expression, 

Gsz = 2 
s 

II -(R,/Rtl’]“2 
A(rdJ)Vdtl +(RiiR~)~Gsi (18) 

0 

giving 

Gsz = F[+d,(f. - (R~,‘R~)Z~“‘] + (Rj/‘R#Gs,. (19) 

When RI = 0 equation (19) reduces to equation (13) for a 
sphere. 

The behavior of the mean beam length ratio, u/uc, for 
exchange with the entire surface will be intermediate between 
that for the sphere and the planar medium for radius ratios 
in the range 0 < RI/R2 < 1 where the characteristic beam 
length is based upon (R, -R ,). 

DISCUSSION 

Each of the generalized exchange factors obtained in 
previous sections has the advantage of being valid for any 
molecular-gas band absorption model. Results which have 
been previously obtained for these configurations have for 
the most part been baaed upon either the gray band 
approximation or a specific nongray equation. Although 
Hottel and Sarofim ([l], p. 287) suggest that only gray 
results are needed, there have been significant improvements 
in the intervening years in the calculation methods for 
radiation properties of isothermal gases [14] which fully 
justify and indeed clearly indicate the need for nongray, 
preferably generalized, results. The weighted sum of gray 
gases procedure advocated by Hottel and Sarofim and others 
is totally dependent upon the availability of measured gas 
emissivities and even then is rather awkward to apply. In 
many cases the necessary results are lacking, especially for 
mixtures of radiating species. The lack of mixture data is 
a significantly lesser difficulty when nongray band absorp- 
tion models are used [14]. When the bands are non- 
overlapping the calculation of radiative exchange for multi- 
band media is str~~tforward. If overlapping is important, 
various procedures may be employed [14,15]. In either 
case, nongray exchange factors are needed. 

There is an interesting observation in connection with the 
present results and those for gray media. It has been found 
that if analytical results for a gray medium are available, 
these can be transformed into generalized results by rela- 
tively simple substitutions and algebraic m~ipuiations, thus 
bypassing the need for evaluation of the integral in equation 
(6) in generalized terms. Al1 that is needed is a table of 
transfer functions, K.(x), for a gray band medium. As an 
example, equation (10) can be obtained directly from gray 
results of [l], p. 267 by the substitution 1-2&(x) = 
-2Kz(x). Several other results given in [1] can be general- 
ized in this way. 
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